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Abstract
With the rapid development of sharing economy and mobile Internet in recent years, a wide
range of applications of the Two-sided Online Bipartite Matching (TOBM) problem in spa-
tial data are gaining increasing popularity. To be specific, given a group of workers and tasks
that dynamically appear in a 2D space, the TOBM problem aims to find a matching with the
maximum cardinality between workers and tasks satisfying the spatiotemporal constraints.
Many works have studied this problem, but the settings of their problems are different from
each other. Moreover, no prior works have compared the performances of the algorithms
tailored for different settings under a unified definition. As a result, there lacks a guideline
for practitioners to adopt appropriate algorithms for various scenarios. To fill the blank in
this field, we present a comprehensive evaluation and analysis of the representative algo-
rithms for the TOBM problem in this paper. We first give our unified definition and then
provide uniform implementations for all the algorithms. Finally, based on the experimen-
tal results on both synthetic and real datasets, we discuss the strengths and weaknesses of
the algorithms in terms of short-term effect and long-term effect, which can be guidance on
selecting appropriate solutions or designing new methods.

Keywords Online bipartite matching · Two-sided online · Spatial data

1 Introduction

With the rapid development of mobile Internet, there has been more and more study on
spatiotemporal data mining [11, 21, 22], trajectory data processing [32–35] and query pro-
cessing on spatiotemporal data [9, 10, 12–15, 23, 31]. And one of the fundamental research
topics on spatial data in the two-sided online bipartite matching problem. Given a group of
workers and tasks that dynamically appear on the platform, the Online Bipartite Matching
(OBM) problem aims to find a maximum cardinality matching in the corresponding bipartite
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graph of workers and tasks. In another word, the platform aims to maximize the total num-
ber of performed tasks. This problem has been widely studied in academia, e.g., database
community [16, 17, 26, 43] and theory community [24, 25, 30, 46]. With the rapid devel-
opment of sharing economy and mobile Internet in recent years, the OBM problem has also
attracted much interest from the industry. The representative platforms include real-time
taxi-dispatching platforms (e.g., Uber [3] and DiDi Chuxing [5]), online food delivery plat-
forms (e.g., Seamless [2]), and spatial crowdsourcing platforms (e.g., Gigwalk [4]). In such
applications, a large number of tasks dynamically appear on the platform and need to be
assigned to the available workers based on the spatiotemporal information of both workers
and tasks.

Some previous works (see survey [30]) study the OBM problem in one-sided online
scenario, where only tasks (i.e., one side of the bipartite graph) appear on the platform
dynamically. However, such works always assume that the workers appear on the platform at
the very beginning, which is less practical in the aforementioned platforms. On the contrary,
workers (i.e., the other side) also dynamically appear on the platform and leave after their
deadlines. Inspired by real applications, many recent works [16, 24–26, 43] study the OBM
problem in the two-sided online scenario, i.e., the Two-sided Online Bipartite Matching
(TOBM) problem. Particularly, there are a wide range of applications of the TOBM problem
and some representative works are as follows.

Task Assignment in Spatial Crowdsourcing [16, 26, 43]. The task assignment is one of
the major challenges in spatial crowdsourcing [20, 26, 28, 36–41, 44, 45, 47]. In spatial
crowdsoucring platforms like Gigwalk [4], both crowd-workers (i.e., workers) and micro-
tasks (i.e., tasks) dynamically arrive and thus can represent the two sides of the bipartite
graph. Besides, the assignments between workers and tasks are usually determined by the
platform in real-time once they appear. As the goal of the platform is usually to maximize
the number of total assignments, task assignment in spatial crowdsourcing corresponds to
one of the solutions to TOBM problem.

Taxi Dispatching/Food Delivery [24, 43]. Taxi dispatching (e.g., Uber [3] and DiDi
Chuxing [5]) and food delivery (e.g., Seamless [2]) are two representative services in the
intelligent transport systems [29, 48]. In these applications, taxis and couriers can be mod-
eled as workers, while passengers and food orders can be modeled as tasks. If a worker is
able to perform a task under the spatiotemporal constraints, there will be an edge between
their corresponding vertices in the bipartite graph. Similarly, all of them also dynamically
arrive at the platform and the platform will dispatch suitable taxis (couriers) to pick up the
passengers (food orders). In order to maximize the number of successfully served users,
existing methods to the TOBM problem can also be applied in these intelligent systems.

Real Estate Agency [24]. In real daily life, the TOBM problem also exists in the real estate
agency (e.g., RE/MAX [1]). Specifically, both landlords and tenants drop by dynamically
in an online fashion during daytime. The tenants specify the type of apartments they pre-
fer and the deadlines before which they expect to move in. The landlords also set deadlines
for tenants before which they can visit the apartments. In this problem, both tenants and
landlords can be represented as each side of vertices in a bipartite graph. If a tenant and
a landlord mutually satisfy each other’s conditions and deadline constraints, there will be
an edge between their corresponding vertices. The real estate agency charges for each suc-
cessful deal and thus aims to maximize the cardinality of the matching between landlords
and tenants. Therefore, the real estate agency application can be addressed by the TOBM
problem.
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1.1 Motivation

To handle the two-sided online bipartite matching problems on spatial data, existing studies
have proposed various algorithms to address the problems under different definitions. How-
ever, no existing work has compared the algorithms tailored for different settings under a
unified definition. As a result, the performance of algorithms in different works cannot be
compared directly and there lacks a guideline for practitioners to select appropriate algo-
rithms for various scenarios. Prior works [16, 39] also have evaluated some other variants
of online matching problems in spatial data. Specifically, Tong et al. [39] present an exper-
imental comparison of the algorithms for the one-sided online minimum bipartite matching
problem in spatial data. Cheng et al. [16] mainly comprehensively compare the algorithms
in the batch based mode (i.e., offline scenario). Thus, both works focus on a less practi-
cal scenario instead of the two-sided online scenario. Moreover, neither work studies the
TOBM problem, i.e., maximizing the cardinality of the matching.

In addition to the lack of a comprehensive evaluation of existing methods, two valuable
evaluation metrics have always been ignored in existing works [16, 26, 39, 43].

– As deadline is a commonly used temporal constraint for tasks, the average response
time of all the tasks should be considered as an evaluation metric. This factor is
more practical and important in platforms like Uber [3] and Seamless [2], where the
requesters of the tasks expect to be answered as soon as possible.

– Existing works mainly focus on the short-term (e.g., real dataset of 1 day) performances
of the algorithms while the study of long-term (e.g., real dataset of 1 month) perfor-
mances of the algorithms in practice is absent. As the spatiotemporal factors change
over time, the stability of the matching policies should also be evaluated in terms of
long-term effects.

1.2 Contributions

In this paper, we provide a fair experimental comparison study over existing algorithms of
the TOBM problem. Specifically, the algorithms include Greedy, Batch-GR, Batch-LLEP,
Batch-NNP, Random, ext-Ranking and POLAR-OP. Greedy assigns the new arrival worker
(task) to the currently nearest unmatched task (worker). The three batch based algorithms
divide the continuous time into a number of time instances and try to achieve the maximum
cardinality in each batch. Random will randomly assign an unmatched neighbor to every
new arrival worker or task. Ext-Ranking samples a value to represent the rank for each new
arrival object, and then determines the allocation between workers and tasks when the time
reaches their deadlines. The basic idea of POLAR-OP is that the new arrival workers can be
guided by the platform to move to the places where future tasks may appear.

We show their strengths and weaknesses according to the experimental results. Partic-
ularly, we consider the average response time of tasks as an important evaluation metric,
which has always been ignored by prior works. Moreover, we conduct experiments on large
real datasets to verify the long-term performance of the tested algorithms. We summarize
our contributions as follows.

– We propose a general definition for the Two-sided Online Bipartite Matching (TOBM)
problem in Section 2, which can be the foundation of the future studies in this area.

– We present uniform implementations for all the representative algorithms compared
in our experimental study. These implementations adopt common basic operations
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and thus offer a base for the comparison of future works in this area. Furthermore,
the datasets and source code used in the experiments are available in [7]. In addition
to the uniform implementations, we conduct experiments not only on the synthetic
datasets but also on the large real datasets to have a comprehensive study of the tested
algorithms.

– We discuss the advantages and disadvantages of the representative algorithms based
on the experimental evaluation in Section 4, which could provide a guideline for
practitioners to select appropriate algorithms for various scenarios.

The rest of the paper is organized as follows. In Section 2, we formally define the
TOBM problem and then introduce two widely used analysis models for its online solu-
tions. In Section 3, we introduce and discuss the representative deterministic algorithms
and randomized algorithms. In Section 4, we systematically evaluate and analyze the exist-
ing methods according to the experimental results on both synthetic and real datasets. We
finally conclude this paper in Section 5.

2 Preliminaries

In this section, we first formally define the Two-sided Online Bipartite Matching (TOBM)
problem (Section 2.1) and then introduce two widely used theoretical analysis models for
the online algorithms (Section 2.2): the adversarial order model and the i.i.d model.

2.1 Problem definition

We first introduce some basic concepts and then formally define the Two-sided Online
Bipartite Matching (TOBM) problem.

Definition 1 (Task) A task, denoted by t = 〈lt , st , dt 〉, appears on the platform at the
location lt in the 2D space at time st and it needs to be answered within dt time (i.e.,
deadline) after its arrival, otherwise it will expire.

In two-sided markets (platforms), tasks are dynamically submitted to the platforms by
the requesters. In practice, the response to the requesters (tasks) can be either acceptances
or rejections. An acceptance indicates that there will be a worker assigned to the task. On
the contrary, a rejection indicates that the platform decides not to assign any worker. The
possible reason for a rejection could be lack of workers, unachievable deadlines, etc.

Definition 2 (Worker) A worker, denoted by w = 〈lw, sw, dw, rw〉, appears on the plat-
form at the initial location lw in the 2D space at time sw. He/She is expected to answer
(accept) a task within dw time (i.e., deadline) after his/her arrival, otherwise he/she will
leave the platform. Besides, he/she can only perform the task in a restricted circular range
of w, which takes the current location of w as the center and rw as the radius.

In a two-sided market, workers also dynamically appear on the platforms. The major
existing works [16, 24–26] usually assume that the worker holds still after his/her appear-
ance. However, a flexible worker can be guided to the locations with potentially high
demands (i.e., the number of tasks). Tong et al. [43] first consider this practical issue and
flexibleworkers can perform the tasks far away from their initial locations (lw). Specifically,
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the flexible workers do not wait at their initial locations after their appearance. Instead, the
platform can guide the workers to move to the areas where future tasks may appear.

Note that we have abused the term deadline as in [43]. For the sake of simplicity, we
refer to it as the maximum amount of time that a worker or a task can wait to be answered
instead of a specific timestamp. Based on the aforementioned basic definitions, we define
the Two-sided Online Bipartite Matching (TOBM) problem as follows.

Definition 3 (TOBM problem) Given a set of workers W and a set of tasks T , where both
workers and tasks dynamically appear on the platform (i.e., two-sided online scenario), the
TOBM problem is to find a matching M between W and T to maximize the cardinality of
the assignment (i.e., OBJ(M) = |M|), such that the following constraints are satisfied:
– Range Constraint: Any task assigned to a worker w must be located in the restricted

circular range of w.
– Deadline Constraint: Every task-worker pair (t, w) ∈ M should satisfy the deadline

requirements of both the worker and the task. (1) After the task t appears on the plat-
form, the worker (i.e., w) assigned to this task should be determined within its deadline
dr . (2) After the worker w appears on the platform, the task (i.e., t) allocated to this
worker should be determined within his/her deadline dw .

– Invariable Constraint: Once a task t is assigned to a worker w, the allocation of (t, w)

cannot be changed.

We next illustrate the TOBM problem with a toy example as follows.

Example 1 Suppose there are four workers (taxis) w1-w4 and four tasks (taxi-calling
requests) t1-t4 in a real-time taxi-dispatching platform. The goal of the platform is to max-
imize the number of completed tasks (i.e., the cardinality of the assignment between tasks
and workers). The initial locations of both tasks and workers are labeled in a 2D space

Fig. 1 An example of the TOBM problem
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(X, Y ) in Fig. 1. For the sake of simplicity, we assume that the restricted spatial range of
each worker is a circular area with the radius of 2 unit distance as shown in Fig. 1. Table 1
shows the arrival order, arrival times and deadlines of workers and tasks.

In the two-sided online scenario, all the workers and tasks dynamically appear on the
platform and should be matched before the corresponding deadline. The procedure can
be further illustrated with the strategy Greedy, which will be discussed later in Section 3.
Greedy always tries to allocate each new-arriving worker (task) to its currently nearest
unmatched task (worker). For example, whenw1 arrives at 9:03, both t1 and t2 are within the
spatial range of w1. The platform then immediately assigns w1 to t1 as the distance of the
pair (w1, t1) is shorter than that of (w1, t2). Similarly, the platform assigns w2 to t2 at 9:03,
t3 to w3 at 9:05 and t4 to w4 at 9:06. Consequently, the cardinality of the assignment is 4.

2.2 Competitive analysis models

The performance of online algorithms is usually compared with the optimal allocation in
the offline scenario and is mainly affected by the arriving orders of both tasks and workers.
In the following, we introduce the evaluation standard competitive ratio (CR) for the online
algorithms under two different analysis models: adversarial order model and i.i.d model.

Similar to the definition of the approximation ratio which is utilized to evaluate the
approximation algorithms, the competitive ratio measures how good an online algorithm is
compared with the optimal result of the offline scenario where all the information is pro-
vided in the beginning. There are two widely used competitive analysis models in existing
works [30]: the adversarial order model and the i.i.d model, which focus on the worst-case
input and the stochastic input of both tasks and workers, respectively. The corresponding
competitive ratios under these two models are defined as follows.

Definition 4 (CR under the adversarial order model) Under the adversarial order (AO)
model, the competitive ratio of an online algorithm for the TOBM problem is defined as
follows:

CRAO = min
(W,T )

OBJ(M)

OBJ(OPT )
(1)

where workers and tasks can have arbitrary initial locations and arrival orders respec-
tively, OBJ(M) is the cardinality of the matching produced by the online algorithm and
OBJ(OPT ) is the cardinality of the optimal assignment in the offline scenario.

Table 1 Information of workers
and tasks Arrival order Arriving time Deadline

t1 9 : 00 6

t2 9 : 01 4

w1 9 : 02 10

w2 9 : 03 10

w3 9 : 04 10

w4 9 : 04 10

t3 9 : 05 4

t4 9 : 06 2
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Definition 5 (CR under the I.I.D model) Under the i.i.d (IID) model, the competitive ratio
of an online algorithm for the TOBM problem is defined as follows:

CRIID = min
(W,T ) follow DW and DT

E[OBJ(M)]
E[OBJ(OPT )] (2)

where DW and DT are the spatiotemporal distributions of workers and tasks, E[OBJ(M)]
is the expected cardinality of the matching produced by the online algorithm and
E[OBJ(OPT )] is the expected cardinality of the optimal assignment in the offline scenario.

According to their definitions, the i.i.d model assumes that tasks and work-
ers are independently and identically distributed while the adversarial order model
has no such assumption. Specifically, under the adversarial order model, work-
ers and tasks have arbitrary initial locations and arrival orders. Under the i.i.d
model, the initial locations of workers and their arrival orders follow the spa-
tiotemporal distribution DW , and the initial locations of tasks and their arrival
orders follow the spatiotemporal distribution DT . Thus, if an online algorithm is ρ-
competitive under the adversarial order model, it is also ρ-competitive under the i.i.d
model.

3 Algorithms

In this section, we introduce the main ideas of the representative online algorithms evalu-
ated in our experimental study. These algorithms can be mainly classified into two groups,
deterministic algorithms (Section 3.1) and randomized algorithms (Section 3.2).

3.1 Deterministic algorithms

In the following, we introduce two deterministic algorithms, Greedy [25] and Batch [26].
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3.1.1 Greedy

Greedy is first proposed by Karp et al. in [25], which is the first work to study the online
bipartite matching problem. The basic idea of Greedy is to assign the new arrival worker
(task) to the currently nearest unmatched task (worker).

Algorithm 1 shows the procedure of Greedy. Whenever a new object (i.e., a worker or
a task) appears on the platform, Greedy first initiates a candidate set (Cand) of currently
unmatched adjacent objects satisfying all the constraints (line 3), and then selects its nearest
neighbor from the candidate set as the matching result (lines 4–6). If there is no such feasible
candidate, the new arrival object will wait to be matched until its deadline (lines 7–8). The
competitive ratio of Greedy is 0.5 under the adversarial order model, which is known as
the barrier to break in the online bipartite matching problem [24, 25]. To further illustrate
the Greedy algorithm, we go through the following example.

Example 2 Back to our running example in Example 1. When w1 arrives at 9:02, both t1
and t2 are within the spatial range of w1. The platform then immediately assigns w1 to t1
as the distance of the pair (w1, t1) is shorter than that of (w1, t2). Similarly, the platform
assigns w2 to t2 at 9:03, t3 to w3 at 9:05, and t4 to w4 at 9:06. Consequently, the cardinality
of the assignment is 4.

3.1.2 Batch

As aforementioned, task assignment in spatial crowdsourcing is one of the representative
applications of the online bipartite matching problem. Kazemi et al. [26] first propose
the challenge of task assignment in spatial crowdsourcing. They propose a batch based
framework to solve the problem, which is further widely adopted in other works [16, 17].

The basic idea of the framework is to divide the continuous time into a number of time
instances (i.e., batches) and tries to achieve the maximum cardinality in each batch. Specifi-
cally, the tasks and workers appear on the platform within a batch should wait to be matched
at the end of the batch. In each batch, the task assignment problem can be reduced to the
bipartite matching problem. Thus, the Hungarian algorithm [27] can be used to obtain the
assignment with the maximum cardinality in this batch. Kazemi et al. [26] name this pro-
cedure as GR and they also consider other practical issues such as location entropy and
moving distance of workers.

Least Location Entropy Priority (LLEP) [26] tries to improve the task assignment by
exploiting the spatial characteristics of both tasks and workers. Since the tasks located in
the areas with higher worker densities are already very likely to be performed, it assigns
higher priority to the tasks located in the areas with fewer workers around to improve the
chance of them being matched. Nearest Neighbor Priority (NNP) [26] considers the average
moving distance of workers. Similarly, the worker closer to the task has the higher prior-
ity to be matched to the task. In the bipartite graph, the priority can be represented as the
weight of the edge. Thus, Kazemi et al. [26] reduce this variant of the task assignment prob-
lem to the minimum cost maximum flow problem or the minimum cost bipartite matching
problem, which can be solved by the Edmonds–Karp algorithm [19] or the Kuhn–Munkres
algorithm [8]. Even though Batch is a heuristic algorithm without any theoretical guarantee,
the prior work [16] has validated its effectiveness and efficiency.
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3.2 Randomized algorithms

In the following, we introduce three randomized algorithms for the TOBM problem,
Random [25], ext-Ranking [24] and POLAR-OP [43].

3.2.1 Random

The Random algorithm is also devised by Karp et al. in [25]. Its basic idea is similar to the
Greedy algorithm, i.e., the algorithm will assign an unmatched neighbor (if exists) to every
new arrival worker or task. The only difference is that the unmatched neighbor is sampled
uniformly and randomly from all the candidates in the Random algorithm. However, the ran-
domness of this algorithm does not improve its theoretical guarantee since the competitive
ratio is still 0.5 under the adversarial order model.

3.2.2 ext-Ranking

In order to beat the Greedy algorithm with a higher competitive ratio, Huang et al. [24] first
propose the ext-Ranking algorithm for the TOBM problem. The ext-Ranking is extended
from the Ranking algorithm, which is first devised by Karp et al. [25]. The basic idea is to
sample a value to represent the rank for each new arrival object (a worker or a task), and
then determine the allocation between the workers and the tasks only at their deadlines.

The procedure of ext-Ranking is illustrated in Algorithm 2. Whenever a new object v

(i.e., a worker or a task) appears on the platform, ext-Ranking will pick a value (denoted by
yv) for it from [0,1) uniformly and randomly (lines 2–3). When the time reaches the deadline
of v′ and if it remains unmatched, ext-Ranking first initiates a candidate set (Cand) of
currently unmatched adjacent objects satisfying all the constraints (line 5), and then selects
the one with the minimum value (i.e., the highest rank) as the matching result (lines 6–8). If
there is no such feasible candidate set, the object v′ will be rejected due to its expired time
(lines 9–10). Besides, all the unmatched tasks and workers will wait until their deadlines.

The competitive ratio of ext-Ranking is 0.554 under the adversarial ordermodel, which
is better than the Greedy and the Random algorithm. To further illustrate the ext-Ranking
algorithm, we go through the following example.
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Fig. 2 The framework of POLAR-OP

Example 3 Back to our running example in Example 1. Before 9:05, two tasks t1-t2 and
four workers w1-w4 appear on the platform one by one with the randomly picked values,
i.e., t1(0.2), t2(0.4), w1(0.5), w2(0.6), w3(0.2) and w4(0.4). At 9:05, the time reaches the
deadline of t2 and t2 is within the spatial range of three worker w1-w4. The platform then
assigns t2 to w3 as it has the highest rank (i.e., the lowest value). At 9:06, the time reaches
the deadline of t1, and the platform assigns it to w1. At 9:08, the time reaches the deadline
of t4, and the platform assigns it to w4. At 9:09, the time reaches the deadline of t3 and
it becomes expired as it is not within the spatial range of the only available worker w2.
Consequently, the cardinality of the assignment is 3.

3.2.3 POLAR-OP

Tong et al. [43] devise the POLAR-OP algorithm for the Flexible Two-sided Online Task
Assignment (FTOA) problem, which is a variant of the TOBM problem. All the previous
algorithms assume that the workers stay in the same place and wait to be matched before
their deadline. Differently, the basic idea of POLAR-OP is that the new arrival workers can
be guided by the platform to move to the places where future tasks may appear.

Specifically, Tong et al. [43] propose a two-step framework (see Fig. 2), which consists
of offline prediction and online task assignment. The framework aims to guide the online
algorithm by the offline solution (i.e., offline-guide-online).

In the offline prediction step, the framework divides the 2D space into multiple grids
and the continuous time into uniform time slots. Moreover, the spatiotemporal distributions
of the subsequent workers and tasks (i.e., the number of workers and tasks respectively in
each grid and each time slot) can be predicted according to the historical data [42]. Based
on the predicted numbers of workers and tasks, the algorithm instantiates the same num-
ber of vertices on the left (workers ̂W ) and right (tasks ̂T ) of a bipartite graph ̂G. Finally,
the maximum cardinality matching ̂M, i.e., offline guide, can be acquired by the classi-
cal offline bipartite matching algorithms such as the Hungarian algorithm [27] or Dinic’s
algorithm [18].

In the online task assignment step, based on the offline matching ( ̂M), POLAR-OP can
guide the movement of flexible workers to maximize the potential number of assignments.
They introduce the concept type. If a worker (task) has the same type as another worker
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(task), they must appear in the same area (grid) within the same time slot. Algorithm 3
illustrates the procedure of POLAR-OP.

– When a worker v appears, POLAR-OP first selects a worker vertex w with the same
type as v in the guidance ̂M, which is assigned to task ̂Mw in the offline matching
(lines 4–5). If there exist unmatched tasks (Cand) which have the same type as ̂Mw

and satisfy all constraints, the algorithm will uniformly sample a task for the new arrivel
worker (lines 6–9). Otherwise, the new arrival worker v will be guided to move to the
grid of ̂Mw (lines 10–11).

– When a task v appears, POLAR-OP first selects a task vertex t with the same type as
v in the guidance ̂M, which is allocated to worker ̂Mt in the offline matching (lines
13–14). If there exist unmatched workers (Cand) that have the same type as ̂Mt and
satisfy all constraints, a worker will be uniformly sampled to perform the new arrival
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Table 2 Comparisons of representative studies on the TOBM problem

Algorithm Randomization Time complexity Analysis model Ratio

Greedy [25] Deterministic O(max{|W |, |T |}2) Adversarial Order 0.5

Batch-GR [26] Deterministic O(|B| · max{|W|, |T |}3)a – Heuristic

Batch-LLEP [26] Deterministic O(|B| · max{|W|, |T |}3) – Heuristic

Batch-NNP [26] Deterministic O(|B| · max{|W|, |T |}3) – Heuristic

Random [25] Randomized O(max{|W |, |T |}2) Adversarial Order 0.5

ext-Ranking [24] Randomized O(max{|W |, |T |}2) Adversarial Order 0.554

POLAR-OP [43] Randomized O(max{|W |, |T |}2) I.I.D 0.47

a|B| denotes the number of batches, |W| and |T | denote the maximum number of workers and tasks among
all batches respectively

task (lines 15–18). If the offline guidance ̂M contains no such type as v, the algorithm
can reject the task immediately (lines 21–22).

In the POLAR-OP algorithm, workers and tasks are assumed to be independently and iden-
tically distributed, which can be predicted by existing learning methods [42, 48]. Thus, Tong
et al. [43] analyze its competitive ratio to be 0.47 under the i.i.d model.

3.3 Summary

Table 2 summarizes all the aforementioned online algorithms evaluated in our experimental
study. In terms of competitive ratios, the ext-Ranking algorithm achieves a better theoret-
ical guarantee than the other algorithms. Among all the algorithms, POLAR-OP has the
assumption about the spatiotemporal distributions of workers and tasks with the smallest
competitive ratio.

4 Experimental study

In this section, we introduce our experimental settings and then discuss the performances of
the representative algorithms for the TOBM problem.

4.1 Experiment setup

Datasets We conduct experiments on both synthetic datasets and real datasets to evaluate
the performance of the tested algorithms.

Synthetic datasets We generate the locations of workers and tasks on a 2D space with
200 × 200 grids, where each grid represents a 100m×100m square region. We study the
effects of spatial distributions by randomly generating the locations of workers and tasks
following the commonly used exponential and normal distributions [16, 39], as different
distributions may affect the matching results in spatial data [39, 43]. We assume that both
locations of workers and tasks follow the similar distribution, which is reasonable in real
world as the workers often go to the areas where potential tasks may appear. For normal
distributions, we set the variance as 15. Besides, we also vary the number of tasks, the
number of workers, the deadline of tasks and workers, and the radius of restricted circular
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Table 3 Parameter settings for synthetic datasets

Parameter Settings

Mean μ of locations following normal distribution 50,75,100,125,150

Mean 1/λ of locations following exponential distribution 50,75,100,125,150

Number of task|T | 6000,8000,10000,12000,14000

Number of worker |W | 6000,8000,10000,12000,14000

Deadline of task dt (min) 1,1.5,2,2.5,3

Deadline of worker dw (min) 2,2.5,3,3.5,4

Radius of the restricted circular range of worker rw (km) 0.6,0.8,1,1.2,1.4

range of workers. Table 3 illustrates the settings in detail and the default settings are marked
in bold. Specifically, we set the deadline of tasks to 1 to 3 min. It is reasonable since in
some applications, like car-hailing services, the requester will leave the platform if his/her
request is not answered within several minutes.

Real datasets We use the open datasets [6] collected by the largest taxi dispatching plat-
form DiDi Chuxing [5] in China. The datasets contain the taxi requests from 01/11/2016 to
30/11/2016 in the urban area of Chengdu, China (with latitude from 30.65◦ to 30.73◦ and
longitude from 104.04◦ to 104.13◦), including the information of spatial locations, arrival
time, etc. Specifically, we use the pickup time and locations of taxi-calling orders as the
arriving time and locations of tasks. We also use the drop-off time and locations of taxi-
calling orders as the arriving time and locations of workers. As the information of radius of
the range of workers is not included in the dataset, we vary this parameter to test the short-
term performance. In order to test the long-term performance, we conduct experiments on
real taxi requests from 6th to 30th. Table 4 illustrates the settings in detail and the default
setting is marked in bold. As we need the datasets of first five days to predict the spatiotem-
poral distributions for the POLAR-OP algorithm, we only test the long-term performance
with datasets of the other 25 days. Since there are 1,840,228 tasks and 1,840,228 workers
in the long-term test, this test can also reflect the scalability of the algorithms.

Evaluation metrics In the experiments, we use the following metrics to evaluate the
effectiveness and efficiency of the existing methods.

– Matching Size. The matching size represents the total number of assigned pairs, i.e.,
the objective of the TOBM problem.

– Average Response Time of Tasks. (ARTT for short) The response time of a task refers
to the time it takes for t to be answered by the platform (either accept or reject). If a
task is evetually not assigned to any worker, its response time will equal to its deadline.

Table 4 Parameter settings for real datasets

Parameter Settings

Number of tasks |W | 82,171

Number of workers |T | 82,171

Radius of the restricted circular range of worker rw (km) 0.5,1,1.5,2,2.5

The number of days for long-term test 1, 2, 3, · · · , 24, 25
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In practice, ARTT is an important indicator to reflect the satisfaction of the requesters.
As a result, lower ARTT usually indicates better and faster service.

– Running Time. The running time represents the total execution time of an algorithm
for solving the TOBM problem.

– Memory usage. The memory usage represents the peak space cost of an algorithm
during the test. As the memory usages of all compared algorithms are below 100 MB,
we omit their memory costs in the following contents since they are all efficient in
terms of memory usage.

Compared algorithms and implementation We evaluate the performance of the repre-
sentative algorithms, i.e., Greedy (Section 3.1.1), batch based algorithms including Batch-
GR,Batch-LLEP,and Batch-NNP (Section 3.1.2), Random (Section 3.2.1), ext-Ranking
(Section 3.2.2), and POLAR-OP (Section 3.2.3).

For the batch based algorithms, we set the batch size as 30 seconds, which could strike a
balance between the matching result and the waiting time of the requesters. For the POLAR-
OP algorithms, we set the speed of workers to be 36 km/h, which is about the average
speed of motor vehicles in cities. Besides, We use two methods to predict the spatiotemporal
distributions: (1) In the experiments on real datasets, we use the techniques recommended
in [43] to learn the spatiotemporal distributions. (2) In the experiments on synthetic datasets,
we generate the predicted distribution by adding noises. First, we generate the 2D locations
of workers and tasks based on a specific distribution. These locations are considered as the
real distribution of workers and tasks. Then, we randomly sample 20% objects from the
real distribution and add noises to their coordinates. Specifically, for a sampled point, we
randomly add 200m or -200m to its x-coordinate and y-coordinate respectively. Finally, we
combine the 20% noisy points with the left 80% points as the predicted distribution. The
reason is that the synthetic datasets are generated based on a specific distribution and thus
the learning techniques can easily learn the distribution, which is extremely hard in real
datasets.

The compared algorithms are all implemented in GNU C++. And the experiments are
conducted on a server with 40 Intel(R) Xeon(R) E5 2.30GHz processors. Each experiment
is repeated 30 times and the average results are reported.

4.2 Experiment results

4.2.1 Experiments on synthetic datasets

Effect of the spatial distributions Figure 3 shows the effect of normal distribution (Fig. 3a
to c) and exponential distribution (Fig. 3d to f) by varying the mean. We can observe that
the mean of the normal distribution barely affects the matching size as it only changes
the center of the distribution. However, with the increase of the mean in the exponential
distributions, the matching size decreases since the locations of workers and tasks are more
diversified so that there are potentially fewer tasks located in the spatial range of workers.
Batch-GR outperforms all other algorithms in terms of matching size (i.e., objective) while
POLAR-OP performs the worst due to the inaccurate predictions. As for ARTT, Greedy and
Random outperform the other algorithms since they always try to assign a worker or a task
the moment it appears. However, the ARTT of ext-Ranking is the highest as it determines
the allocation between the workers and tasks only at their deadlines. In terms of the running
time, the time costs of the batch based algorithms, Batch-GR, Batch-LLEP and Batch-NNP,
are obviously higher than the others due to their high time complexities in each batch.
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Fig. 3 Results on varying the mean of spatial distributions of the workers and tasks

Effect of the number of tasks |T | Figure 4a to c show the results of varying the number of
tasks. In Fig. 4a, the matching sizes of all the tested algorithms increase with the number of
tasks, as there are potentially more tasks appearing in the restricted spatial range of workers.
Besides, almost all the algorithms achieve similar performances in terms of the matching
size while POLAR-OP still performs the worst due to the same aforementioned reason. In
terms of ARTT, ext-Ranking is still the worst while both Greedy and Random are better

Fig. 4 Results on varying the number of the tasks and workers



Geoinformatica

Fig. 5 Results on varying the deadlines, and the restricted circular range of workers

than the others. Besides, the ARTT for all the algorithms increases with the number of tasks
because more tasks can not be answered before deadlines. In terms of running time, both
Batch-LLEP and Batch-NNP take more time than the others.

Effect of the number of workers |W | Figure 4d to f show the experimental results when
varying the number of workers. In terms of objective (i.e., matching size), it shows a similar
pattern as varying the number of tasks. As for ARTT of all the algorithms, it decreases when
the number of workers increases, because more workers can respond to tasks more quickly.
As for running time, POLAR-OP and Batch-GR are faster than the others.

Effect of the deadline of tasks dt The results are presented on the first row of Fig. 5.
In Fig. 5a, Batch-GR still outperforms the others in terms of matching size, following by
Greedy and Random. In Fig. 5b, Greedy and Random are still the best while ext-Ranking
is the worst. In terms of running time, Batch-GR is the fastest, followed by POLAR-OP,
ext-Ranking, Greedy and Random. Batch-LLEP and Batch-NNP are clearly slower than the
others.
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Fig. 6 Results on varying the restricted circular range of workers

Effect of the deadline ofworkers dw The results are presented on the second row of Fig. 5.
As for matching size, we can see a similar pattern as varying the deadline of tasks. In
Fig. 5e, the ARTT of both ext-Ranking and POLAR-OP increases with the deadline. It is
reasonable for ext-Ranking since the decisions of assignments are often made at the time of
deadline. For POLAR-OP, it is also reasonable since the matching size of POLAR-OP does
not increase. In Fig. 5f, we can observe that the running times of all algorithms decrease with
the increase of deadlines. However, both Batch-LLEP and Batch-NNP are still the slowest.

Effect of the range of workers rw The results are presented on the last row of Fig. 5. In
Fig. 5g, we can observe that matching sizes achieved by all the algorithms except POLAR-
OP increase when the radius rw increases. When the length of radius is short (e.g., 0.6),
POLAR-OP outperforms the others. As for ARTT and running time, we can observe some
similar patterns.

Based on the experiments on synthetic datasets, we conclude that all the evaluated algo-
rithms except ext-Ranking are likely to satisfy the real-time requirement of the applications
like car-hailing services. First, we believe that the average response time of no more than 1
min (the minimum deadline of tasks on synthetic datasets) is acceptable in most real-time
applications like Uber [3]. According to the experimental results on synthetic datasets, we
can see that the ARTT for all the algorithms except ext-Ranking is less than 1 min in most
cases.

4.2.2 Experiments on Real datasets

Effect of the range of workers rw Figure 6 shows the results of varying the restricted cir-
cular range of workers on the real datasets. In Fig. 6a, the matching sizes achieved by the
algorithms first slightly increase and then keep stable when rw increases from 1km to 3km.
Moreover, Batch-GR still obviously outperforms other algorithms. In Fig. 6b, Batch-LLEP
achieves the lowest ARTT, which is different from our observation on the synthetic dataset.
POLAR-OP sometimes achieves higher average response time than ext-Ranking due to
the smaller matching size. As for the running time, the time cost of Batch-GR increases
drastically when rw increases. On the contrary, POLAR-OP outperforms the others.

Long-term test We study the long-term test of the algorithms as shown in Fig. 7. In
Fig. 7a, we observe that Batch-GR outperforms all the other algorithms in terms of match-
ing size from the long-term perspective. Besides, we can see that the ranking of algorithms
in descending order of matching size in Fig. 6a still holds in Fig. 7a, which means that the
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Fig. 7 Results on long-term test

performance in the short term still holds in the long term. Note that POLAR-OP is likely
to have different short-term and long-term performances because the prediction accuracy of
the spatiotemporal distribution in the short-term may be inconsistent with that in the long-
term. However, the prediction accuracy seems to be relatively low in both short-term and
long-term on real datasets so that POLAR-OP does not perform that well throughout the
experiments. In Fig. 7b, we find that Batch-LLEP stably outperforms other algorithms in
terms of ARTT.

As for running time, POLAR-OP is the fastest. However, Batch-GR becomes the slow-
est, which is contrary to the conclusion on synthetic datasets. The reason is as follows.
The time complexity of Batch-GR is O(|B| · max{|W |, |T |}3), where |B| denotes the
number of batches, |W | and |T | denote the maximum number of workers and tasks
among all batches respectively. The time complexity of other non-batch based algo-
rithms is O(max{|W |, |T |}2). Note that |W | is far smaller than |W | and |T | is far
smaller than |T |. (1) On synthetic datasets, there are only 120 batches (one hour). Batch-
GR can outperform other algorithms in terms of running time because max{|W |, |T |}2
dominates max{|W |, |T |}3. (2) On real datasets, there are 2880 batches (one day).
Batch-GR runs the slowest because |B| is very large compared with that on synthetic
datasets.

4.3 Experiment summary

We summarize our experimental findings as follows.

– In the short-term and long-term tests, Batch-GR outperforms other algorithms in terms
of matching size.

– In the short-term test, Greedy and Random outperform other algorithms in terms of
ARTT on synthetic datasets, while Batch-LLEP achieves the lowest ARTT in the
long-term test. On the other hand, even though ext-Ranking achieves the highest
competitive ratio, its average response time is usually the highest among all the algo-
rithms. Moreover, we conclude that all the evaluated algorithms except ext-Ranking
are likely to satisfy the real-time requirement of the applications like car-hailing
services.

– In terms of running time, both Batch-LLEP and Batch-NNP are often the least efficient
while POLAR-OP is often more efficient. In particular, POLAR-OP is the most effi-
cient algorithm in the experiments on real datasets. Even though the matching size of
POLAR-OP is relatively smaller, it can have better performance when the prediction
becomes more accurate.
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In summary, we recommend Batch-GR when the requirement of average response time
is not strict. However, we recommend Greedy and Random when the requirement of aver-
age response time is strict. Finally, if the prediction of the spatiotemporal distribution
of future tasks can be more accurate, we recommend the POLAR-OP algorithm since it
may obtain a remarkable improvement in terms of matching size while remaining good
efficiency.

5 Conclusion

In this paper, we present a comprehensive experimental study of the representative algo-
rithms for the Two-sided Online Bipartite Matching (TOBM) problem in spatial data.
Specifically, we first propose a unified definition for the TOBM problem. Then we present
uniform implementations for the state-of-the-art algorithms, and verify their effectiveness
and efficiency on both synthetic and real datasets. Based on the experimental results, we
discuss the strengths and weaknesses of the algorithms in terms of short-term effect and
long-term effect, which can be a guidance for selecting appropriate solutions or designing
new methods.

References

1. (1973) RE/MAX. http://www.remax.com
2. (1999) Seamless. https://www.seamless.com
3. (2009) Uber. https://www.uber.com
4. (2010) Gigwalk. http://www.gigwalk.com
5. (2012) DiDi Chuxing. https://www.didiglobal.com
6. (2016) GAIA Open Dataset. https://outreach.didichuxing.com/research/opendata
7. (2019) Source code and datasets. https://share.weiyun.com/5zX7DGs
8. Burkard RE, Dell’Amico M, Martello S (2009) Assignment problems. SIAM
9. Cao X, Chen L, Cong G, Jensen CS, Qu Q, Skovsgaard A, Wu D, Yiu ML (2012) Spatial keyword

querying. In: ER, pp 16–29
10. Chen L, Cong G (2015) Diversity-aware top-k publish/subscribe for text stream. In: SIGMOD, pp 347–

362
11. Chen L, Shi S, Lv J (2011) Efficient computation of measurements of correlated patterns in uncertain

data. In: ADMA, pp 311–324
12. Chen L, Cui Y, Cong G, Cao X (2014) SOPS: a system for efficient processing of spatial-keyword

publish/subscribe. PVLDB 7(13):1601–1604
13. Chen L, Cong G, Cao X, Tan K (2015) Temporal spatial-keyword top-k publish/subscribe. In: ICDE,

pp 255–266
14. Chen L, Shang S, Zhang Z, Cao X, Jensen CS, Kalnis P (2018) Location-aware top-k term pub-

lish/subscribe. In: ICDE, pp 749–760
15. Chen Z, Cong G, Zhang Z, Fu TZJ, Chen L (2017) Distributed publish/subscribe query processing on

the spatio-textual data stream. In: ICDE, pp 1095–1106
16. Cheng P, Jian X, Chen L (2018) An experimental evaluation of task assignment in spatial crowdsourcing.

PVLDB 11(11):1428–1440
17. Deng D, Shahabi C, Demiryurek U (2013) Maximizing the number of worker’s self-selected tasks in

spatial crowdsourcing. In: GIS, pp 314–323
18. Dinitz Y (2006) Dinitz’ algorithm: the original version and even’s version. In: Theoretical computer

science, essays in memory of Shimon even, pp 218–240
19. Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow

problems. J ACM 19(2):248–264
20. Gao D, Tong Y, She J, Song T, Chen L, Xu K (2017) Top-k team recommendation and its variants in

spatial crowdsourcing. Data Sci Eng 2(2):136–150

http://www.remax.com
https://www.seamless.com
https://www.uber.com
http://www.gigwalk.com
https://www.didiglobal.com
https://outreach.didichuxing.com/research/opendata
https://share.weiyun.com/5zX7DGs


Geoinformatica

21. Han J, Wen J (2013) Mining frequent neighborhood patterns in a large labeled graph. In: CIKM, pp 259–
268

22. Han J, Wen J, Pei J (2014) Within-network classification using radius-constrained neighborhood
patterns. In: CIKM, pp 1539–1548

23. Han J, Zheng K, Sun A, Shang S, Wen J (2016) Discovering neighborhood pattern queries by sample
answers in knowledge base. In: ICDE, pp 1014–1025

24. Huang Z, Kang N, Tang ZG, Wu X, Zhang Y, Zhu X (2018) How to match when all vertices arrive
online. In: STOC, pp 17–29

25. Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. In:
STOC, pp 352–358

26. Kazemi L, Shahabi C (2012) GeoCrowd: enabling query answering with spatial crowdsourcing. In: GIS,
pp 189–198

27. Kuhn HW (1955) The hungarian method for the assignment problem. Nav Res Logist Q 2(1–2):83–97
28. Liu A, Wang W, Shang S, Li Q, Zhang X (2018) Efficient task assignment in spatial crowdsourcing with

worker and task privacy protection. GeoInformatica 22(2):335–362
29. Liu Y, Guo B, Du H, Yu Z, Zhang D, Chen C (2017) Poster: Foodnet: optimized on demand take-out

food delivery using spatial crowdsourcing. In: MobiCom, pp 564–566
30. Mehta A (2013) Online matching and ad allocation. Found Trends Theoret Comput Sci 8(4):265–368
31. Shang S, Chen L, Wei Z, Jensen CS, Wen J, Kalnis P (2016) Collective travel planning in spatial

networks. IEEE Trans Knowl Data Eng 28(5):1132–1146
32. Shang S, Chen L, Jensen CS, Wen J, Kalnis P (2017) Searching trajectories by regions of interest. IEEE

Trans Knowl Data Eng 29(7):1549–1562
33. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial

networks. PVLDB 10(11):1178–1189
34. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in

spatial networks. VLDB J 27(3):395–420
35. Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2018) Parallel trajectory-to-location join. IEEE

Trans Knowl Data Eng 30(1):1–1
36. She J, Tong Y, Chen L, Cao CC (2016) Conflict-aware event-participant arrangement and its variant for

online setting. IEEE Trans Knowl Data Eng 28(9):2281–2295
37. Song T, Tong Y, Wang L, She J, Yao B, Chen L, Xu K (2017) Trichromatic online matching in real-time

spatial crowdsourcing. In: ICDE, pp 1009–1020
38. Tong Y, Zhou Z (2018) Dynamic task assignment in spatial crowdsourcing. SIGSPATIAL Special

10(2):18–25
39. Tong Y, She J, Ding B, Chen L, Wo T, Xu K (2016) Online minimum matching in real-time spatial data:

experiments and analysis. PVLDB 9(12):1053–1064
40. Tong Y, She J, Ding B, Wang L, Chen L (2016) Online mobile micro-task allocation in spatial

crowdsourcing. In: ICDE, pp 49–60
41. Tong Y, Chen L, Shahabi C (2017) Spatial crowdsourcing: challenges, techniques, and applications.

PVLDB 10(12):1988–1991
42. Tong Y, Chen Y, Zhou Z, Chen L, Wang J, Yang Q, Ye J, Lv W (2017) The simpler the better: a

unified approach to predicting original taxi demands based on large-scale online platforms. In: KDD,
pp 1653–1662

43. Tong Y,Wang L, Zhou Z, Ding B, Chen L, Ye J, Xu K (2017) Flexible online task assignment in real-time
spatial data. PVLDB 10(11):1334–1345

44. Tong Y, Chen L, Zhou Z, Jagadish HV, Shou L, Lv W (2018) SLADE: a smart large-scale task
decomposer in crowdsourcing. IEEE Trans Knowl Data Eng 30(8):1588–1601

45. Tong Y, Wang L, Zhou Z, Chen L, Du B, Ye J (2018) Dynamic pricing in spatial crowdsourcing: a
matching-based approach. In: SIGMOD, pp 773–788

46. Wang Y, Wong SC (2015) Two-sided online bipartite matching and vertex cover: beating the greedy
algorithm. In: ICALP, pp 1070–1081

47. Zeng Y, Tong Y, Chen L, Zhou Z (2018) Latency-oriented task completion via spatial crowdsourcing.
In: ICDE, pp 317–328

48. Zhang L, Hu T, Min Y, Wu G, Zhang J, Feng P, Gong P, Ye J (2017) A taxi order dispatch model based
on combinatorial optimization. In: KDD, pp 2151–2159

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



Geoinformatica

Yiming Li is currently an undergraduate student in CSE at Beihang University. His current research interests
include spatio-temporal data processing and game theory.

Jingzhi Fang is currently an undergraduate student in CSE at Beihang University. Her current research
interests include spatio-temporal data processing and game theory.

Yuxiang Zeng is currently working toward the Ph.D. degree in the Department of Computer Science
and Engineering, Hong Kong University of Science and Technology. His major research interests are
crowdsourcing and spatio-temporal data management.



Geoinformatica

Balz Maag received his M.Sc. degree in electrical engineering and information technology from ETH Zurich
in 2014. He is currently a Ph.D. student in the Computer Engineering and Networks Laboratory (TIK) at ETH
Zurich. His research interests include the development and optimization of algorithms for wireless sensor
networks and crowd-sensing applications.

Yongxin Tong received the Ph.D. degree in Computer Science and Engineering from the Hong Kong Uni-
versity of Science and Technology, in 2014. He is currently a Distinguished Research Fellow in the State Key
Laboratory of Software Development Environment of the School of Computer Science and Engineering at
Beihang University. His research interests include crowdsourcing, spatio-temporal data processing and anal-
ysis, uncertain data mining and management, and social network analysis. He has published more than 50
academic papers in highly refereed journals and conference proceedings and has served on the program com-
mittees of more than two dozen international conferences and workshops. He is an associate editor of IEEE
Transactions on Big Data (TBD). He is an Alibaba DAMO Academy Young Fellow (2018) and a member of
the ACM, the IEEE and the CCF.



Geoinformatica

Lingyu Zhang joined Didi Chuxing in 2013 and is a research fellow in AI Labs. His research focuses on
applying machine learning and data mining algorithms in ride sharing services. He designed and initiated
several large intelligent systems in Didi, such as an optimized taxi dispatch system, destination predicting
system. He has over 20 patents in intelligent transportation and his research has been published at KDD.



Geoinformatica

Affiliations

Yiming Li1 · Jingzhi Fang1 ·Yuxiang Zeng2 ·Balz Maag3 ·Yongxin Tong1 ·
Lingyu Zhang4

Yiming Li
ymli@buaa.edu.cn

Jingzhi Fang
15231133@buaa.edu.cn

Yuxiang Zeng
yzengal@cse.ust.hk

Balz Maag
balz.maag@tik.ee.ethz.ch

Lingyu Zhang
zhanglingyu@didichuxing.com

1 SKLSDE Lab, School of Computer Science and Engineering and IRI, Beihang University, Beijing, China
2 Department of Computer Science and Engineering, The Hong Kong University of Science and

Technology, Hong Kong SAR, China
3 Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
4 Didi Chuxing, Beijing, China

http://orcid.org/0000-0002-5598-0312
mailto: ymli@buaa.edu.cn
mailto: 15231133@buaa.edu.cn
mailto: yzengal@cse.ust.hk
mailto: balz.maag@tik.ee.ethz.ch
mailto: zhanglingyu@didichuxing.com

	Two-sided online bipartite matching in spatial data: experiments and analysis
	Abstract
	Introduction
	Motivation
	Contributions

	Preliminaries
	Problem definition
	Competitive analysis models

	Algorithms
	Deterministic algorithms
	Greedy
	Batch

	Randomized algorithms
	Random
	ext-Ranking
	POLAR-OP

	Summary

	Experimental study
	Experiment setup
	Datasets
	Synthetic datasets
	Real datasets
	Evaluation metrics
	Compared algorithms and implementation


	Experiment results
	Experiments on synthetic datasets
	Effect of the spatial distributions
	Effect of the number of tasks |T|
	Effect of the number of workers |W|
	Effect of the deadline of tasks dt
	Effect of the deadline of workers dw
	Effect of the range of workers rw

	Experiments on Real datasets
	Effect of the range of workers rw
	Long-term test


	Experiment summary

	Conclusion
	References
	Affiliations


